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Abstract. A rarefied gas flow induced around a flat plate with a uniformly heated single side in a closed vessel, which is also
known as the radiometric flow, is considered. Its steady behavior is investigated on the basis of the Bhatnagar-Gross-Krook
(BGK) model of the Boltzmann equation and the diffuse reflection boundary condition for a wide range of the Knudsen
number, by means of an accurate finite-difference method which gives a correct description of the discontinuity contained in
the velocity distribution function. It is found that a thermal edge flow is induced along the plate on both heated and unheated
sides near the edge, that drives the overall circulating flow in the vessel. The detailed flow structure near the edge as well as
along the plate is clarified.
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INTRODUCTION

Let us consider a flat vane immersed in a rarefied gas rested in a closed vessel. If the temperatures of two sides of
the vane are different, a force is exerted on it, resulting in a motion of the vane with the hotter side trailing. This
phenomenon is known as the radiometric phenomenon and can be observed in the famous Crookes radiometer. This
classical phenomenon [1, 2, 3] has received significant attention in modern kinetic theory [4] in relation to various
applications in microtechnologies (see the references in [4]). It is known that the source of the force is the rarefied gas
flow caused by the temperature field around the vane.

On the other hand, when a uniformly heated plate is immersed in a rarefied gas, a flow called the thermal edge flow
is induced near the edges [5, 6]. Since the vanes in radiometers are thin, this flow may play an important role in the
flow structure in radiometers. However, this aspect has not been paid attention to so far. In the present study, focusing
on this aspect, we carry out an accurate numerical analysis of the flow around an infinitely thin plate in a radiometer
by a finite difference method based on a model Boltzmann equation.

PROBLEM AND FORMULATION

We consider a rarefied gas confined in a square vessel−L/2 ≤ X1 ≤ L/2 and−L/2 ≤ X2 ≤ L/2 with a uniform
temperatureT0, whereXi is the rectangular space coordinate system (Fig. 1). An infinitely long flat plate with width
D and without thickness is placed in the gas atX1 = 0 and−D/2 ≤ X2 ≤ D/2. The surface of the plate facing the
negativeX1 direction (X1 = 0− and−D/2 ≤ X2 ≤ D/2) is kept at the same temperature as the vessel, whereas that
facing the positiveX1 direction (X1 = 0+ and−D/2≤ X2 ≤ D/2) is kept at a different uniform temperatureT1 higher
thanT0 (T1 > T0). We investigate the steady behavior of the gas induced in the vessel under the following assumptions:
(i) the behavior of the gas is described by the Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equation; (ii)
the gas molecules reflected on the boundaries obey the diffuse reflection condition.

Basic Equations

Let us first introduce the following notations:ξi (or ξξξ ) denotes the molecular velocity,f (X1,X2,ξξξ ) the velocity
distribution function,ρ(X1,X2) the density,vi(X1,X2) the flow velocity (v3 = 0), T(X1,X2) the temperature, andR the
specific gas constant (the Boltzmann constant divided by the mass of a molecule). Then, the BGK equation for the



FIGURE 1. Problem.

present steady two-dimensional problem is written as
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whereAc is a constant (Acρ is the collision frequency),dξξξ = dξ1dξ2dξ3, and the integral with respect toξξξ is carried
out over the whole space. Let us denote byS+ andS− the right- and left-hand sides of the plate, respectively. That is,
S± = {(X1,X2) | X1 = 0±, −D/2≤ X2 ≤ D/2}. The diffuse reflection condition on each side of the plate is given by
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whereT+
w = T1 andT−

w = T0 and the upper (lower) sign corresponds toS+ (S−). On the other hand, the boundary
condition on the container [(X1 = ±L/2, −L/2≤ X2 ≤ L/2) or (−L/2 < X1 < L/2, X2 = ±L/2)] is given by
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whereni (n3 = 0) is the unit normal vector to the boundary pointing to the gas.
Let us introduce other macroscopic variables, the pressurep and the stress tensorpi j . They are defined by

p = RρT, pi j =
∫

(ξi −vi)(ξ j −v j) f dξξξ . (6)

The present boundary-value problem is characterized by the parametersL/D, T1/T0, and the Knudsen number
Kn = ℓ0/D, whereℓ0 = (2/

√
π)(2RT0)1/2/Acρav is the mean free path of the gas molecules in the equilibrium state

at rest with temperatureT0 and densityρav with ρav being the average density of the gas in the vessel. In RESULTS
AND DISCUSSIONS below, the notationp0 = RρavT0 is also used.

NUMERICAL ANALYSIS

Since the problem is symmetric with respect toX2 = 0, we can analyze it in the upper half domain (X2 ≥ 0) by imposing
the specular reflection boundary condition atX2 = 0, i.e.,

f (X1,0,ξ1,ξ2,ξ3) = f (X1,0,ξ1,−ξ2,ξ3) for ξ2 > 0 (−L/2 < X1 < L/2). (7)

Then, the solution in the lower half domainX2 < 0 is given in terms of that in the upper half domain by
f (X1,X2,ξ1,ξ2,ξ3) = f (X1,−X2,ξ1,−ξ2,ξ3) (−L/2≤ X1 ≤ L/2,−L/2≤ X2 < 0).



FIGURE 2. The flow induced in the upper half of the vessel forT1/T0 = 2. (a) Kn= 5, (b) Kn= 1, (c) Kn= 0.1, (d) Kn= 0.01.
The arrow indicates the two-dimensional flow velocity vector(v1,v2)/(2RT0)1/2 at its starting point.

We analyze the present boundary-value problem by the finite difference method introduced in [7], where a super-
sonic rarefied gas flow past a flat plate has been investigated. It is well known that the velocity distribution function
is generally discontinuous in the gas around a convex boundary [8]. The same holds true in the present problem,
where the convex nature is concentrated at the edges of the plate. That is, for any fixedξi , a discontinuity is intro-
duced in the velocity distribution function at each edge and it propagates in the gas along the characteristic of (1).
Consequently, at any point(X1,X2) in the gas, the velocity distribution function is discontinuous in the direction
ξ2/ξ1 = (X2/D∓ 1/2)/(X1/D) on any planeξ3 = const in the ξξξ space [the upper (lower) sign corresponds to the
discontinuity originating from(X1/D,X2/D) = (0,1/2) and(0,−1/2), respectively]. The situation is the same in the
case of the flow past a flat plate, and the method of [7] is capable to capture such discontinuities. It should also be
mentioned that the discontinuity is also caused by the four corners of the vessel. However, since this discontinuity is
much smaller than that caused by the edge, we ignore it in our numerical analysis. Since the detailed description of
the numerical method is given in [7], we omit it here and concentrate on the results.

RESULTS AND DISCUSSIONS

The computation is carried out forL/D = 4 andT1/T0 = 2, and for the Knudsen number Kn ranging from 0.01 to 20.
Figures 2–4 show, respectively, the flow velocity, isodensity lines, and isothermal lines in the upper half of the vessel
for various Kn. A counterclockwise circulating flow is induced. At the location away from the edge, the flow speed
increases as Kn decreases, and then decreases. The center of the circulation shifts towardX1 = 0 with the decrease
of Kn. The isolines of the macroscopic variables meet at the edge. This is because the macroscopic variables are not
determined uniquely there. That is, they take different values at the edge depending on the direction of approach. The
flow speed takes its maximum in the close vicinity of the edge in all the cases. Near the edge appear steep temperature
gradients along the plate on both heated and unheated sides, each of which causes a flow along the plate by the
same mechanism as the thermal creep flow. Such flows are known as the thermal edge flow [5, 6]. The flow is in the
downward (upward) direction on the right-hand side (left-hand side) of the plate. In the free molecular limit Kn= ∞,
no flow is induced in the vessel, as proved in [9].

In order to see more closely the flow field near the edge as well as along the plate, we show in Figs. 5 and 6 the
profiles of some macroscopic quantities along theX2 axis for various Kn (Fig. 5 for Kn= 5, 1, and 0.5; Fig. 6 for
Kn = 0.1, 0.05, and 0.01). In each figure, (a) shows the profile of the flow speed|vi | = (v2

1 + v2
2)

1/2, (b) that of the
temperatureT, and (c) that of the pressurep. Note thatv1 = 0 on the plate (0≤ X2/D ≤ 1/2) and that|vi | = |v2|
there. Note also that the macroscopic quantities are discontinuous at the edge (see the previous paragraph). In the



FIGURE 3. Isodensity lines in the upper half of the vessel forT1/T0 = 2. (a) Kn= 5; ρ/ρav = 0.86+ 0.02m (m = 0, . . . ,7),
(b) Kn = 1; ρ/ρav = 0.78+ 0.02m (m= 0, . . . ,13), (c) Kn= 0.1; ρ/ρav = 0.65+ 0.05m (m= 0, . . . ,8), (d) Kn= 0.01; ρ/ρav =
0.6+0.05m (m= 0, . . . ,10).

FIGURE 4. Isothermal lines in the upper half of the vessel forT1/T0 = 2. (a) Kn= 5; T/T0 = 1.05+ 0.05m (m = 0, . . . ,8),
(b) Kn = 1; T/T0 = 1.05+ 0.05m (m = 0, . . . ,10), (c) Kn= 0.1; T/T0 = 1.05+ 0.05m (m = 0, . . . ,15), (d) Kn= 0.01; T/T0 =
1.05+0.05m (m= 0, . . . ,18).

free molecular flow (Kn= ∞), the macroscopic quantities are uniform along each side of the plate. The velocity
distribution of the impinging molecules on the plate is isotropic and no tangential force is exerted. The molecular
collisions thermalize the molecules impinging on the plate on the heated (right-hand) side, causing a temperature rise
there [Fig. 5(b)]. Near the edge, the gas is cooled down (heated up) on the right-hand (left-hand) side of the plate
due to the slower (faster) molecules coming from the negative (positive)X1 direction. Therefore, the temperature is
more elevated in the middle part of plate on the right-hand side and near the edge on the left-hand side. In these
hotter regions, faster molecules tend to repel each other, causing the decrease of the density (or the gas is expanded
there). In this way, a nonuniform pressure distribution along the plate with a high (low) pressure region near the edge
on the right-hand (left-hand) side is established [see Fig. 5(c)]. The velocity distribution of the impinging molecules



being disturbed nonuniformly, it is no longer isotropic and a tangential force is exerted on the plate. As its reaction,
a flow is induced. The flow speed increases with the decrease of Kn [Fig. 5(a)]. With the further decrease of Kn, the
flow velocity tends to vanish and the temperature tends to accommodate to the surface temperature in the bulk part
of the plate [Fig. 6(a) and (b)]. However, the state of the gas is far from equilibrium in the vicinity of the edge where
the surface temperatures changes discontinuously. Therefore, near the edge, the near-free-molecular type behavior
described above is retained locally. This nonequilibrium region seems to be confined in the edge area whose width is
of the order of the mean free path, and thus it becomes vanishingly thin in the limit Kn→ 0. However, our numerical
results indicate that the values of the macroscopic quantities at the edge are not likely to approach the corresponding
values in the bulk part of the plate, where the state of the gas approaches a uniform equilibrium state on each side as
Kn → 0.

In the first paragraph of the present section, we stated that thermal edge flows with upward and downward directions
are induced on heated and unheated sides of the plate, respectively. Then, one may ask if a similar flow pattern is
obtained near the edge if one considers the problem of the original thermal edge flow in which both sides of the
plate are equally heated (or cooled). In order to verify this, we also performed numerical computations by setting the
temperature ofS− (the left-hand side of the plate) equal toT1 (T1 = 2 or 0.5). Though two problems are quite different
and a direct comparison is not possible, it has been found that the local flow structure on the heated side (unheated) side
in the present problem is similar to that of the original thermal edge flow around a heated (cooled) plate. Especially, the
temperature and pressure (or density) fields exhibit a striking resemblance between two problems. Thus, it is almost
certain that the thermal edge flow is induced in the present problem and plays an essential role.

Let us denote by(F,0,0) the total force acting on the plate (per unit width inX3). Then,F is given byF =
−2

∫ D/2
0 [p11]+−dX2, where[p11]+− = (p+

11− p−11) with p±11 = p11(X1 = 0±,X2). In Fig. 7, we show the distribution
of the normal stressp11 along the plate for various Kn [(a)] andF versus Kn [(b)] (T1/T0 = 2). The distribution ofp11
is similar to that of the pressurep, including the way of transition with respect to Kn [cf. Figs. 5(c) and 6(c)]. When
Kn is large, the force is exerted on the whole part of the plate. As Kn becomes small, the difference of the normal
stress[p11]+− between both sides vanishes in the bulk part of the plate and the force acts only on the edge area, which
tends to shrink with the decrease of Kn. As a result, the total forceF vanishes in the limit Kn→ 0, in spite of the fact
that the stress difference remains finite at the edge in the same limit (see the last sentence of the second paragraph of
this section). The total forceF increases monotonically with Kn and reaches the limiting valueF/Dp0 = −0.20986
in the free molecular limit (Kn→ ∞).

Finally, we summarize some data for the present numerical computation. Here, we use the dimensionless variables
xi = Xi/D andζi = ξi/(2RT0)1/2. For the discretization of the(x1,x2) space, the upper half domain is subdivided by
(321,161) nonuniformly distributed lattice lines [for the (x1,x2) directions]. The minimum lattice interval is 2.8×10−5

(Kn = 0.01), 6.7×10−5 (0.02≤ Kn ≤ 0.05), 8.4×10−4 (0.06≤ Kn ≤ 1), and 3.7×10−3 (1.5≤ Kn ≤ 20) for both
thexi direction (i = 1,2). For theζζζ space, we first eliminate theζ3 variable from the system by taking marginals off .
Then,(ζ1,ζ2) is expressed by the plane polar coordinates as(ζ1,ζ2) = (ζ cosθζ ,ζ sinθζ ). The discretization is made
on (ζ ,θζ ) and we have used(73×481) grid points (nonuniform forζ and uniform forθζ ). The minimum interval for
ζ grid is 2.0×10−3 at ζ = 0, and the maximum interval is 0.35 atζ = 8.58, which is the upper limit ofζ . In order
to estimate the accuracy of the present computation, we compared the result based on the standard lattice system with
that based on a finer lattice system containing double lattice lines both for thex1 andx2 directions. The differences in
the macroscopic variables (relative forρ, T, andp, and absolute foru andv) are less than 2.7×10−4 for Kn = 0.1 and
less than 8.5×10−5 for Kn = 0.5, 1, 2, 5, 10, and 20 in the whole domain. A similar comparison was also made for the
(ζ ,θζ ) space. Since the variations in the macroscopic variables for this case were much smaller than the corresponding
variations in the test for the(x1,x2) space, the values are omitted here.
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FIGURE 5. Profiles of the flow speed|vi |= (v2
1+v2

2)
1/2, temperatureT, and pressurep along theX2 axis for various Kn (Kn= 5,

1, and 0.5) forT1/T0 = 2 in the case ofL/D = 4. (a) |vi |, (b) T, (c) p. The result for the positive side of the plate (X1 = 0+ and
0≤ X2/D ≤ 1/2) is shown by the solid line and that for the negative side (X1 = 0− and 0≤ X2/D ≤ 1/2) by the dash-dotted line.
In (b) and (c), the result for the free molecular flow (Kn→ ∞) is also included.

FIGURE 6. Profiles of the flow speed|vi | = (v2
1 + v2

2)
1/2, temperatureT, and pressurep along theX2 axis for various Kn

(Kn = 0.1, 0.05, and 0.01) forT1/T0 = 2 in the case ofL/D = 4. (a) |vi |, (b) T, (c) p. The result for the positive side of the plate
(X1 = 0+ and 0≤ X2/D ≤ 1/2) is shown by the solid line and that for the negative side (X1 = 0− and 0≤ X2/D ≤ 1/2) by the
dash-dotted line.

FIGURE 7. Distribution of the normal stressp11 along each side of the plate [(a)] and the forceF acting on the plate [(b)] for
T1/T0 = 2 in the case ofL/D = 4. In (a), the result for the positive side of the plate (X1 = 0+ and 0≤ X2/D ≤ 1/2) is shown by the
solid line and that for the negative side (X1 = 0− and 0≤ X2/D ≤ 1/2) by the dashed line. The result for the free molecular flow
(Kn → ∞), which is constant inX2, is also shown in (a). In (b), the limiting valueF/Dp0 = −0.20986 in the free molecular limit
(Kn → ∞) is indicated by the dash-dotted line.


